

Protective ventilation in ALL patients from OR to ICU

PAOLO PELOSI, MD, FERS

Department of Surgical Sciences and Integrated Diagnostics (DISC), San Martino Policlinico Hospital—IRCCS for Oncology, University of Genoa, Genoa, Italy

ppelosi@hotmail.com

British – Ukranian Symposium Kiev – Ukraine – April 2018

Paolo Pelosi. 10-й Британсько-Український Симпозіум. Київ

Conflicts of Interest

I declare NO conflicts of interest

Pelosi P for the PROVE Network (<u>www.provenet.eu</u>)

EDITORIAL

To prevent or cure acute respiratory distress syndrome: that is the question!

Paolo Pelosia and Patricia R.M. Roccob

Curr Opin Crit Care 2014, 20:1–2

Pelosi P for the PROVE Network (<u>www.provenet.eu</u>) Paolo Pelosi. 10-й Британсько-Український Симпозіум. Київ, 2018

Mechanisms of Ventilator Induced Lung Injury

Rocco PR et al. Curr Opin Anaesthesiol. 2012 Apr;25(2):123-30

Pelosi P, Rocco PR, Abreu MG . et al. Expert Rev Respir Med. 2018 Mar 29:1-12

Pelosi P for the PROVE Network (<u>www.provenet.eu</u>)

Intraoperative Use of Low V_T Benefits Surgery Patients without ARDS

Serpa-Neto A. et al. Anesthesiology. 2015 Jul;123(1):66-78

- 2,127 surgery
- patients from 15 studies of intraoperative ventilation
- outcome: PPC

LAS VEGAS — Practice of Ventilation in ORs Worldwide

The LAS VEGAS Investigators - Eur J Anaesthesiol 2017; 34:492–507

- international observational study
- 8,241 patients
- 8.1 [7.2–9.1] mL/kg PBW
- V_T > 8 ml/Kg in 40% of patients

si P for the PROVE Network (<u>www.provenet.eu</u>)

Tidal volume size
6-8 ml/kg predicted body weight
evidence comes from
3 RCTs and
2 meta-analyses

Pelosi P for the PROVE Network (<u>www.provenet.eu</u>)

Use of Lower Tidal Volumes Benefits Patients without ARDS

Serpa Neto A. et al. Intensive Care Med. 2014; 40:950 Serpa Neto A. et al. Crit Care Med. 2015; 43:4155

2,184 ICU patients without ARDS from 7 studies - outcome: duration of ventilation

PRoVENT – Practice of Ventilation in ICUs Worldwide

Serpa-Neto A et al. Lancet Respir Med. 2016 Nov;4(11):882-893.

- international observational study
- 1,022 patients without ARDS
- 7.9 [6.8–9.1] mL/kg PBW
- V_T > 8 ml/Kg in 40% of patients

Pelosi P for the PROVE Network (www.provenet.eu)

PReVENT – Low vs. Intermediate V_T in Patients without ARDS

Simonis F for the PReVENT investigators. TRIALS 2015; 16:266

- superiority RCT
- V_T 4-6 vs 8-10 ml/Kg PBW
- 950 non–ARDS patients
- 5 Dutch ICUs
- VFD-28
- enrolment complete

Protective ventilation includes:

Tidal volume size
6-8ml/kg predicted body weight
evidence comes from
3 RCTs and
2 meta-analyses

Ventilation in Intensive Care Unit–patients with Uninjured Lungs

Protective ventilation includes:

Tidal volume size
6-8 ml/kg predicted body weight
evidence comes from
2 RCTs, 1
meta—analysis and 2
IPD meta—analyses

Ventilation in Intensive Care Unit—patients
with the Acute Respiratory
Distress Syndrome (ARDS)

mild – mild moderate ARDS

severe moderate and
severe ARDS

Protective ventilation
includes:

Protective ventilation
includes:

Pelosi P for the PROVE Network (<u>www.provenet.eu</u>)

Use of Lower Tidal Volumes Benefits Patients with ARDS

Putensen C et al. Ann Intern Med 2009; 151: 566-576

- 1,297 patients with ARDS from 6 RCTs
- Pplat 28-30 cmH₂O
- Outcome: hospital death

	No	Low V _T at similar PEEP	High V _⊤ at similar PEEP	Odds ratio
Brochard	116	-	-	
Brower	52	13/26	12/26	1.17 [0.39 – 3.47]
Brower	861	134/342	171/429	0.68 [0.51 – 0.90]
Stewart	120	30/60	28/60	1.14 [0.56 – 2.34]
				0.75 [0.58 – 0.96]

	No	Low V _T + high PEEP	High V _T + low PEEP	Odds ratio
Amato	53	13/29	17/24	0.33 [0.11 – 1.05]
Villar	95	17/50	24/45	0.41 [0.18 – 0.94]
				0.38 [0.20 – 0.75]

Pelosi P for the PROVE Network (<u>www.provenet.eu</u>)

[METANALYSIS]

LungSafe – Practice of Ventilation in ICUs Worldwide

Bellani G JAMA. 2016 Feb 23;315(8):788-800

- international observational study
- 2,396 patients with mild, moderate or severe ARDS
- $V_T > 8$ ml/Kg in 40% of patients

si P for the PROVE Network (<u>www.provenet.eu</u>)

Protective ventilation includes:

Tidal volume size
6-8 ml/kg predicted body weight
evidence comes from
3 RCTs and
2 meta-analyses

Ventilation in Intensive Care Unit–patients with Uninjured Lungs

Protective ventilation includes:

Tidal volume size
6-8 ml/kg predicted body weight
evidence comes from
2 RCTs, 1
meta-analysis and 2
IPD meta-analyses

Ventilation in Intensive Care Unit–patients with the Acute Respiratory Distress Syndrome (ARDS)

mild - mild moderate ARDS

Protective ventilation includes:

Tidal volume size
6–8 ml/kg predicted body weight
evidence comes from
2 RCTs and
1 meta–analysis

severe moderate and severe ARDS

Protective ventilation includes:

Tidal volume size
6–8 ml/kg predicted body weight
evidence comes from
2 RCTs and
1 meta–analysis

Pelosi P for the PROVE Network (<u>www.provenet.eu</u>)

Paolo Pelosi. 10-й Б

Intraoperative protective mechanical ventilation and risk of postoperative respiratory complications: hospital based registry study

Ladha K et al. BMJ 2015;351:h3646

Postoperative Pulmonary Complications

LAS VEGAS – Practice of Ventilation in ORs Worldwide

The LAS VEGAS Investigators - Eur J Anaesthesiol 2017; 34:492–507

- international study
- 8,241 patients
- Pplat 15.5 [13.0-18.5]
 cm H₂O
- Ppeak 17.5 [15.0-21.0]
 cm H₂O
- Ppeak > 20 cm H₂O
 (Pplat > 18 cmH₂O) in
 25-30% of patients

Pelosi P for the PROVE Network (www.provenet.eu)

Protective ventilation includes:

Tidal volume size
6-8 ml/kg predicted body weight
evidence comes from
3 RCTs and
2 meta-analyses

Pplat < 17 cmH₂O)
suggestion comes from
observational studies

Ventilation in Intensive Care Unit–patients with Uninjured Lungs

Protective ventilation includes:

Tidal volume size
6-8 ml/kg predicted body weight
evidence comes from
2 RCTs, 1
meta-analysis and 2
IPD meta-analyses

Ventilation in Intensive Care Unit–patients with the Acute Respiratory
Distress Syndrome (ARDS)

mild - mild moderate ARDS

severe moderate and severe ARDS

Protective ventilation includes:

Tidal volume size
6–8 ml/kg predicted body weight
evidence comes from
2 RCTs and
1 meta–analysis

Protective ventilation includes:

Tidal volume size
6–8 ml/kg predicted body weight
evidence comes from
2 RCTs and
1 meta–analysis

Pelosi P for the PROVE Network (www.provenet.eu)

Paolo Pelosi. 10-й Бри

Management and Outcome of Mechanically Ventilated in Patients after Cardiac Arrest

Sutherasan Y et al. Crit Care. 2015 May 8;19:215

Factors associated with ARDS

Higher (> 17 cmH₂O) plateau pressure (odds ratio 1.12, 95% CI interval 1.04 to 1.21)

Factors associated with ICU acquired pneumonia

- 1) Higher tidal volume (odds ratio 1.003, 95% CI 1.0003 to 1.01)
- 2) Higher (>5 cmH₂O) applied PEEP levels

odds ratio 0.89, 95% CL 0.80 to 0.99)

Pelosi P for the PROVE Network (www.provenet.eu)

PROVENT – Practice of Ventilation in ICUs Worldwide

Serpa-Neto A et al. Lancet Respir Med. 2016 Nov;4(11):882-893.

- international observational study
- 1,022 patients without ARDS
- Pplat 15.0 [13.0-20.0] cm
- Pplat > 17 cmH₂O in 30-40% of patients

Protective ventilation includes:

Tidal volume size
6-8 ml/kg predicted body weight
evidence comes from
3 RCTs and
2 meta-analyses

Pplat < 17 cmH₂O)
suggestion comes from
observational studies

Ventilation in Intensive Care Unit–patients with Uninjured Lungs

Protective ventilation includes:

Tidal volume size
6-8 ml/kg predicted body weight
evidence comes from
2 RCTs, 1
meta-analysis and 2
IPD meta-analyses

Pplat < 17 cmH₂O)
suggestion comes from
observational studies

Ventilation in Intensive Care Unit–patients with the Acute Respiratory Distress Syndrome (ARDS)

mild - mild moderate ARDS

severe moderate and severe ARDS

Protective ventilation includes:

Tidal volume size
6–8 ml/kg predicted body weight
evidence comes from
2 RCTs and
1 meta–analysis

Protective ventilation includes:

Tidal volume size
6–8 ml/kg predicted body weight
evidence comes from
2 RCTs and
1 meta–analysis

Pelosi P for the PROVE Network (www.provenet.eu)

Paolo Pelosi. 10-й Бри

Lung Safe – Practice of Ventilation in ICUs Worldwide

Bellani G JAMA. 2016 Feb 23;315(8):788-800

Pplat and Mortality in ARDS

- international observational study
- 2,396 patients with mild, moderate or severe ARDS
- Higher Plat –
 Higher Mortality

Pelosi P for the PROVE Network (www.provenet.eu)

Lung Safe – Practice of Ventilation in ICUs Worldwide

Bellani G JAMA. 2016 Feb 23;315(8):788-800

- international observational study
- 2,396 patients with mild, moderate or severe ARDS
- 40% of patients
 with Plat > 27
 cmH₂O
 Pelosi P for

Protective ventilation includes:

Tidal volume size
6-8 ml/kg predicted body weight
evidence comes from
3 RCTs and
2 meta-analyses

Pplat < 17 cmH₂O suggestion comes from observational studies

Ventilation in Intensive Care Unit–patients with Uninjured Lungs

Protective ventilation includes:

Tidal volume size
6-8 ml/kg predicted body weight
evidence comes from
2 RCTs, 1
meta-analysis and 2
IPD meta-analyses

Pplat < 17 cmH₂O suggestion comes from observational studies

Ventilation in Intensive Care Unit–patients with the Acute Respiratory Distress Syndrome (ARDS)

mild - mild moderate ARDS

severe moderate and severe ARDS

Protective ventilation includes:

Tidal volume size
6–8 ml/kg predicted body weight
evidence comes from
2 RCTs and
1 meta–analysis

Pplat < 27 cmH₂O suggestion comes from observational studies

Protective ventilation includes:

Tidal volume size
6–8 ml/kg predicted body weight
evidence comes from
2 RCTs and
1 meta–analysis

Pplat < 27 cmH₂O suggestion comes from observational studies

Pelosi P for the PROVE Network (www.provenet.eu)

Paolo Pelosi. 10-й Бри

Driving Pressure (ΔP,rs) & PPCs

Neto AS et al. Lancet Respir Med. 2016 Apr;4(4):272-80.

Ladha K et al. BMJ 2015;351:h3646

HIGHER DRIVING PRESSURES

INCREASE THE RISK OF PPCs

(2.679 pts. from 15 RCTs)

(69.265 pts. from observational trials)

Pelosi P for the PROVE Network (<u>www.provenet.eu</u>)

Paolo Pelosi. 10-й Британсько-Український Симпозіум. Київ, 2018

LAS VEGAS – Practice of Ventilation in ORs Worldwide

The LAS VEGAS Investigators - Eur J Anaesthesiol 2017; 34:492–507

- international study
- 8,241 patients
- ΔP 12.0 [10.0-15.0] cm H₂O
- $\triangle P > 12 \text{ cm H}_2O$ in 50% of patients

Pelosi P for the PROVE Network (www.provenet.

Protective ventilation includes:

Tidal volume size
6-8 ml/kg predicted body weight
evidence comes from
3 RCTs and
2 meta-analyses

Pplat < 17 cmH₂O suggestion comes from observational studies

Driving Pressure < 13 cmH₂O suggestion comes from observational studies

Ventilation in Intensive Care Unit–patients with Uninjured Lungs

Protective ventilation includes:

Tidal volume size
6-8 ml/kg predicted body weight
evidence comes from
2 RCTs , 1
meta-analysis and 2
IPD meta-analyses

Pplat < 17 cmH₂O suggestion comes from observational studies

Ventilation in Intensive Care Unit–patients with the Acute Respiratory Distress Syndrome (ARDS)

mild - mild moderate ARDS

Protective ventilation includes:

Tidal volume size
6–8 ml/kg predicted body weight
evidence comes from
2 RCTs and
1 meta–analysis

Pplat < 27 cmH₂O suggestion comes from observational studies

severe moderate and severe ARDS

Protective ventilation includes:

Tidal volume size
6–8 ml/kg predicted body weight
evidence comes from
2 RCTs and
1 meta–analysis

Pplat < 27 cmH₂O suggestion comes from observational studies

Pelosi P for the PROVE Network (www.provenet.eu)

Paolo Pelosi. 10-й Брі

PROVENT – Practice of Ventilation in ICUs Worldwide

Serpa-Neto A et al. Lancet Respir Med. 2016 Nov;4(11):882-893.

- international observational study
- 1,022 patients without ARDS
- Driving pressure associated with mortality

si P for the PROVE Network (<u>www.provenet.eu</u>)

PROVENT – Practice of Ventilation in ICUs Worldwide

Serpa-Neto A et al. Lancet Respir Med. 2016 Nov;4(11):882-893.

- international observational study
- 1,022 patients without ARDS
- ΔP 10.0 [6.0-13] cm H₂O
- $\Delta P > 12 \text{ cmH}_2O \text{ in}$ 30-40% of patients

Pelosi P for the PROVE Network (www.provenet.eu)

Protective ventilation includes:

Tidal volume size
6-8 ml/kg predicted body weight
evidence comes from
3 RCTs and
2 meta-analyses

Pplat < 17 cmH₂O suggestion comes from observational studies

Driving Pressure < 13 cmH₂O suggestion comes from observational studies

Ventilation in Intensive Care Unit–patients with Uninjured Lungs

Protective ventilation includes:

Tidal volume size
6-8 ml/kg predicted body weight
evidence comes from
2 RCTs , 1
meta-analysis and 2
IPD meta-analyses

Pplat < 17 cmH₂O suggestion comes from observational studies

Driving Pressure < 13 cmH₂O suggestion comes from observational studies Ventilation in Intensive Care Unit–patients with the Acute Respiratory Distress Syndrome (ARDS)

mild - mild moderate ARDS

Protective ventilation includes:

Tidal volume size
6–8 ml/kg predicted body weight
evidence comes from
2 RCTs and
1 meta–analysis

Pplat < 27 cmH₂O suggestion comes from observational studies

severe moderate and severe ARDS

Protective ventilation includes:

Tidal volume size
6–8 ml/kg predicted body weight
evidence comes from
2 RCTs and
1 meta–analysis

Pplat < 27 cmH₂O suggestion comes from observational studies

Pelosi P for the PROVE Network (www.provenet.eu)

Paolo Pelosi. 10-й Бри

LungSafe – Practice of Ventilation in ICUs Worldwide

Bellani G JAMA. 2016 Feb 23;315(8):788-800

2,396 pts with mild, moderate or severe ARDS

IPD Metaanalysis of studies in ARDS-patients receiving ELS

Serpa-Neto A et al Intensive Care Med. 2016 Nov;42(11):1672-168

- 653 patients from 12 studies
- RR for hospital death
- median settings in the first 3 days
- AP is associated with mortality

	ALL N = 653	ECMO N = 545	ECCO ₂ R N = 108					
RR [95%—CI] (p-value) for hospital death								
V _T , ml/kg PBW	0.97 [0.87–1.08] (<i>p</i> = 0.602)	0.94 [0.83–1.06] (<i>p</i> = 0.294)	1.03 [0.80–1.32] (<i>p</i> = 0.817)					
PEEP, cm H ₂ O	0.97 [0.92–1.02] (<i>p</i> = 0.249)	0.97 [0.91–1.03] (<i>p</i> = 0.323)	0.92 [0.83–1.02] (p = 0.125)					
Pplat, cm H ₂ O	1.03 [0.97–1.09] (<i>p</i> = 0.298)	1.03 [0.97–1.10] (<i>p</i> = 0.308)	0.94 [0.81–1.10] (<i>p</i> = 0.454)					
ΔP, cm H ₂ O	1.07 [1.02–1.12] (p = 0.004)	1.06 [1.01–1.12] (p = 0.029)	1.19 [1.04–1.35] (<i>p</i> = 0.009)					
adjusted for risk of death, age and severity of ARDS								

losi P for the PROVE Network (<u>www.provenet.eu</u>)

Protective ventilation includes:

Tidal volume size
6-8 ml/kg predicted body weight
evidence comes from
3 RCTs and
2 meta-analyses

Pplat < 17 cmH₂O suggestion comes from observational studies

Driving Pressure < 13 cmH₂O suggestion comes from observational studies

Ventilation in Intensive Care Unit–patients with Uninjured Lungs

Protective ventilation includes:

Tidal volume size
6-8 ml/kg predicted body weight
evidence comes from
2 RCTs, 1meta-analysis
and 2 IPD meta-analyses

Pplat < 17 cmH₂O suggestion comes from observational studies

Driving Pressure < 13 cmH₂O suggestion comes from observational studies

Ventilation in Intensive Care Unit–patients with the Acute Respiratory Distress Syndrome (ARDS)

mild - mild moderate ARDS

Protective ventilation includes:

Tidal volume size
6–8 ml/kg predicted body weight
evidence comes from
2 RCTs and 1 meta–analysis

Pplat < 27 cmH₂O suggestion comes from observational studies

Driving Pressure < 13 cmH₂O
suggestion comes from
observational studies and
1 IPD meta–analysis

severe moderate and severe ARDS

Protective ventilation includes:

Tidal volume size
6–8 ml/kg predicted body weight
evidence comes from
2 RCTs and
1 meta–analysis

Pplat < 27 cmH₂O suggestion comes from observational studies

Driving Pressure < 13 cmH₂O
suggestion comes from
Observational several studies and
1 IPD meta–analysis

Pelosi P for the PROVE Network (www.provenet.eu)

Dose–Response Relationship Between PPCs and PEEP during Surgery

Serpa-Neto A. et al. Anesthesiology. 2015 Jul;123(1):66-78

PEEP

DOES NOT REDUCE PPCs (2,127 patients)

LAS VEGAS – Practice of Ventilation in ORs Worldwide

The LAS VEGAS Investigators - Eur J Anaesthesiol 2017; 34:492–507

(b)

100

- international study
- 8,241 patients
- PEEP 4.0 [0–5] cm H₂O
- PEEP 0 and 5 cm H₂O most frequently used
- FiO₂ 50 [45–70]%
- SatO₂ 99 [98–100]%

Sumulative rate PEEP (cm H₀O)

si P for the PROVE Network (www.provenet.eu)

Protective ventilation includes:

Tidal volume size
6-8 ml/kg predicted body weight
evidence comes from
3 RCTs and
2 meta-analyses

Pplat < 17 cmH₂O suggestion comes from observational studies

Driving Pressure < 13 cmH₂O suggestion comes from observational studies

PEEP < 5 cmH₂O suggestion comes from RCTs and IDP meta-analysis Ventilation in Intensive Care Unit–patients with Uninjured Lungs

Protective ventilation includes:

Tidal volume size
6-8 ml/kg predicted body weight
evidence comes from
2 RCTs, 1meta-analysis
and 2 IPD meta-analyses

Pplat < 17 cmH₂O suggestion comes from observational studies

Driving Pressure < 13 cmH₂O suggestion comes from observational studies

Ventilation in Intensive Care Unit–patients with the Acute Respiratory Distress Syndrome (ARDS)

mild - mild moderate ARDS

Protective ventilation includes:

Tidal volume size
6–8 ml/kg predicted body weight
evidence comes from
2 RCTs and 1 meta–analysis

Pplat < 27 cmH₂O suggestion comes from observational studies

Driving Pressure < 13 cmH₂O suggestion comes from observational studies and 1 IPD meta–analysis

severe moderate and severe ARDS

Protective ventilation includes:

Tidal volume size
6–8 ml/kg predicted body weight
evidence comes from
2 RCTs and
1 meta–analysis

Pplat < 27 cmH₂O suggestion comes from observational studies

Driving Pressure < 13 cmH₂O suggestion comes from observational studies and 1 IPD meta–analysis

Pelosi P for the PROVE Network (www.provenet.eu)

мпозіум. Київ, 201

Associations between PEEP and outcome of patients without ARDS at onset of ventilation:a systematic review and meta-analysis of randomized controlled trials

Serpa Neto et al. Ann. Intensive Care (2016) 6:109

Low PEEP = $2.0 \pm 2.8 \text{ cmH}_2\text{O}$ High PEEP = $9.7 \pm 4.0 \text{ cmH}_2\text{O}$

igh PEEP: No effect on duration of MV – Lower rate of ARDS (high I2)

PROVENT – Practice of Ventilation in ICUs Worldwide

Serpa-Neto A et al. Lancet Respir Med. 2016 Nov;4(11):882-893.

- international observational study
- 1,022 patients without ARDS
- PEEP > 5 cmH₂O
 in 60-40% of patients
- FiO₂ 50 [40–70]%
- PaO₂ /FiO₂ 261 [165–
 1001

Pelosi P for the PROVE Network (www.provenet.eu

Protective ventilation includes:

Tidal volume size
6-8 ml/kg predicted body weight
evidence comes from
3 RCTs and
2 meta-analyses

Pplat < 17 cmH₂O suggestion comes from observational studies

Driving Pressure < 13 cmH₂O suggestion comes from observational studies

 $\label{eq:peep_energy} \begin{aligned} & \text{PEEP} < 5 \text{ cmH}_2\text{O} \\ & \text{suggestion comes from} \\ & \text{3 RCTs and IDP meta-analysis} \end{aligned}$

Ventilation in Intensive Care Unit–patients with Uninjured Lungs

Protective ventilation includes:

Tidal volume size
6-8 ml/kg predicted body weight
evidence comes from
2 RCTs, 1meta-analysis
and 2 IPD meta-analyses

Pplat < 17 cmH₂O suggestion comes from observational studies

Driving Pressure < 13 cmH₂O suggestion comes from observational studies

PEEP < 5 cmH₂O suggestion comes from 6 RCTs and IDP meta-analysis Ventilation in Intensive Care Unit–patients with the Acute Respiratory Distress Syndrome (ARDS)

mild - mild moderate ARDS

Protective ventilation includes:

Tidal volume size
6–8 ml/kg predicted body weight
evidence comes from
2 RCTs and 1 meta–analysis

Pplat < 27 cmH₂O suggestion comes from observational studies

Driving Pressure < 13 cmH₂O suggestion comes from observational studies and 1 IPD meta–analysis

severe moderate and severe ARDS

Protective ventilation includes:

Tidal volume size
6–8 ml/kg predicted body weight
evidence comes from
2 RCTs and
1 meta–analysis

Pplat < 27 cmH₂O suggestion comes from observational studies

Driving Pressure < 13 cmH₂O suggestion comes from observational studies and 1 IPD meta–analysis

elosi P for the PROVE Network (<u>www.provenet.eu)</u>

Effect of Lung Recruitment and PEEP on mortality in Patients With ARDS: updated metaanalysis

Protective ventilation includes:

Tidal volume size
6-8 ml/kg predicted body weight
evidence comes from
3 RCTs and
2 meta-analyses

Pplat < 17 cmH₂O suggestion comes from observational studies

Driving Pressure < 13 cmH₂O suggestion comes from observational studies

PEEP < 5 cmH₂O suggestion comes from 3 RCTs and IDP meta-analysis Ventilation in Intensive Care Unit–patients with Uninjured Lungs

Protective ventilation includes:

Tidal volume size
6-8 ml/kg predicted body weight
evidence comes from
2 RCTs, 1meta-analysis
and 2 IPD meta-analyses

 $Pplat < 17 cmH_2O$ suggestion comes from observational studies

Driving Pressure < 13 cmH₂O suggestion comes from observational studies

PEEP < 5 cmH₂O suggestion comes from 6 RCTs and IDP meta-analysis Ventilation in Intensive Care Unit–patients with the Acute Respiratory
Distress Syndrome (ARDS)

mild - mild moderate ARDS

Protective ventilation includes:

Tidal volume size
6–8 ml/kg predicted body weight
evidence comes from
2 RCTs and 1 meta–analysis

Pplat < 27 cmH₂O suggestion comes from observational studies

Driving Pressure < 13 cmH₂O suggestion comes from observational studies and 1 IPD meta–analysis

PEEP < 10 cmH₂O
suggestion comes from
4 RCTs and IDP meta-analysis

severe moderate and severe ARDS

Protective ventilation includes:

Tidal volume size
6–8 ml/kg predicted body weight
evidence comes from
2 RCTs and
1 meta–analysis

Pplat < 27 cmH₂O suggestion comes from observational studies

Driving Pressure < 13 cmH₂O suggestion comes from observational studies and 1 IPD meta–analysis

PEEP 10-15 cmH₂O suggestion comes from

4 RCTs and IDP meta-analysis

Pelosi P for the PROVE Network (www.provenet.eu)

Protective ventilation includes:

Tidal volume size
6-8 ml/kg predicted body weight
evidence comes from
3 RCTs and
2 meta-analyses

Pplat < 17 cmH₂O suggestion comes from observational studies

Driving Pressure < 13 cmH₂O suggestion comes from observational studies

PEEP < 5 cmH₂O suggestion comes from 3 RCTs and IDP meta-analysis Ventilation in Intensive Care Unit–patients with Uninjured Lungs

Protective ventilation includes:

Tidal volume size
6-8 ml/kg predicted body weight
evidence comes from
2 RCTs, 1meta-analysis
and 2 IPD meta-analyses

Pplat < 17 cmH₂O suggestion comes from observational studies

Driving Pressure < 13 cmH₂O suggestion comes from observational studies

PEEP < 5 cmH₂O suggestion comes from 6 RCTs and IDP meta-analysis Ventilation in Intensive Care Unit–patients with the Acute Respiratory Distress Syndrome (ARDS)

mild - mild moderate ARDS

Protective ventilation includes:

Tidal volume size
6–8 ml/kg predicted body weight
evidence comes from
2 RCTs and 1 meta–analysis

Pplat < 27 cmH₂O suggestion comes from observational studies

Driving Pressure < 13 cmH₂O suggestion comes from observational studies and 1 IPD meta–analysis

PEEP < 10 cmH₂O suggestion comes from 4 RCTs and IDP meta-analysis severe moderate and severe ARDS

Protective ventilation includes:

Tidal volume size
6–8 ml/kg predicted body weight
evidence comes from
2 RCTs and
1 meta–analysis

Pplat < 27 cmH₂O suggestion comes from observational studies

Driving Pressure < 13 cmH₂O suggestion comes from observational studies and 1 IPD meta–analysis

PEEP 10-15 cmH₂O suggestion comes from 4 RCTs and IDP meta-analysis

Pelosi R for the PROVE Network (www.provenet.eu

Close the lungs and keep them rested!

Pelosi P, Rocco PRM, de Abreu MG Crit Care. 2018 Mar 20;22(1):72

Expiration

Inspiration

LOW V_T LOW P_{Plat} LOW PEEP LOW DP

LOW V_T
HIGH P_{Plat}
MODERATE PEEP
LOW-MODERATE DP

LOW V_T
HIGH P_{Plat}
HIGH PEEP
LOW-MODERATE DP

Pelosi P for the PROVE Network (www.provenet.eu)